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It is necessary to keep ring heating to a m1n1mum in order to keep the 
demands on the ring-cooling system low. Eddy-current heating of the moving 
ring is the mos t uncertain, and probably the largest, fraction of the ring's 
heating load. The major eddy heating modes for the most likely MCKESR designs 
( both superconducting and nonsuperconducting rings ) need to be investigated, 
both theoretically and experimentally. The best methods for obtaining good 
tunnel-magnet field homogeneity need to be identified. A theoretical and 
experimental investigation of the use of thin superconducting shields on the 
ring and tunnel wall to minimize the eddy heating is also important. 

The requirement that the ring contain a persistent superconducting 
current imposes a severe design constraint on the MCKESR, since contactless 
cooling of the ring is difficult to achieve at the rate of heat transfer 
calculated as necessary. An alternative approach is to use a nonsupercon
ducting ring that is composed of a magnetic material ( e.g., iron). In this 
case, the ring temperature is allowed to float, and any heat generated in the 
ring is eventually radiated to the tunnel walls, where it is relatively easy 
to remove. Most designs of this type do not yield sufficiently high energy
storage densities to make the cost of storage very attractive. A possible 
exception is the attractive levitation of a magnetic ring using a super
conducting shield in the tunnel wall to provide vertical stabilization. This 
method was illust rated in Fig. 4.2 and discussed briefly in Sec. 4.4. Because 
the magnetic material will saturate, this design is not likely to achieve as 
high an energy-storage density as a MCKESR with a superconducting ring. 
However, the storage density is high enough that the simplicity of the ring 
design should make the storage costs attractive, especially if the higher 
magnetic fields associated with Nb3Sn superconductors become available for the 
tunnel magnets. 

The use of superconducting shields for this design is desirable in that 
associated drag forces should be very low. An alternative that should not be 
ruled out is to provide vertical levitation by the use of a small, inhomo
geneous field acting on a conductor located on the ring. The vertical forces 
are small compared with the radial forces, so the associated drag force may be 
tolerable. Even active feedback for stabilization of this attractive levita
tion scheme needs to be investigated. 

Other research areas, such as rock mechanics, refrigeration design, and 
power I / 0, also need to be investigated, but these areas are not as critical 
as the ones discussed above. Also, further advances in these areas are likely 
to be made in the investigation of other technologies ( e.g., SMES). 

11.2 POSSIBLE TECHNOLOGICAL NICHES 

New technologies, such as the MCKESR, are usually expensive during the 
early developmental stages and cannot compete with existing, in-place tech
nologies. Very often a new technology must find some small use or "techno-
1 ogical niche" to keep it in existence while it is developed and improved2. 
The steam engine is a case in point. 
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For MCKESR, the need to find a technological niche is especially acute. 
Most of the early developmental work will consist of laboratory experiments on 
a rather small scale. Unfortunately, it is not clear that results from 
experiments on a small scale can be extrapolated reliably to large-size 
devices. The large amount of resources necessary to build several inter
mediate-size devices before a 1 km device is built may be difficult to justify 
for such a risky technology as the MCKESR. It is imperative that a niche be 
found for a medium size (R = 20 m) MCKESR if the progress to utility-size 
devices is to be made smoothly. 

Some of the alternative applications for MCKESR were mentioned in Sec. 
1.2. Another utility application that might be appropriate for a smaller
sized MCKESR is the damping of low-frequency instabilities in large, high
voltage power-transmission lines. A 30 MJ SMES unit with a 10 MW converter is 
operated for this purpose by the Bonneville Power Administration3. Another 
possible utility application is as a suppression system for voltage fluc
tuation and flicker4. 

One very appealing niche would be the construction of a small (R 
5-20 m) MCKESR in the form of a user facility for scientists. Experiments in 
many diverse fields could be conducted at the facility. Examples are (1) pro
duction of very-high-quality vacuums and (2) high-velocity monoenergetic 
molecular beams for materials studies. The 7000 m/s ring velocity for the 
example design in this report is only a factor of 70 higher than the 100 m/s 
velocity of magnetically levitated trains in commercial operation. A small 
MCKESR might find a niche as an advanced test facility for maglev-train 
concepts. It can be expected that more exciting and viable ideas along these 
lines will emerge as preliminary work on the MCKESR progresses and more people 
become familiar with its potential. 

A side benefit that a MCKESR facility might exhibit is the provision of 
pulsed power to very-high-field (100 T) magnets vsed for materials studies4. 
Capacitors are presently used in this application, but because of the low 
energy-storage density inherent in capacitors, only very short pulses (ms) 
have been available. 

11.3 
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